A Standard Basis Free Algorithm for Computing the Tangent Cones of a Space Curve
نویسندگان
چکیده
We outline a method for computing the tangent cone of a space curve at any of its points. We rely on the theory of regular chains and Puiseux series expansions. Our approach is novel in that it explicitly constructs the tangent cone at arbitrary and possibly irrational points without using a standard basis.
منابع مشابه
The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7
Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...
متن کاملComputing Intersection Multiplicity via Triangular Decomposition
Fulton’s algorithm is used to calculate the intersection multiplicity of two plane curves about a rational point. This work extends Fulton’s algorithm first to algebraic points (encoded by regular chains) and then, with some generic assumptions, to l many hypersurfaces. Out of necessity, we give a standard-basis free method (i.e. practically efficient method) for calculating tangent cones at po...
متن کاملNew Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups
In this paper, a new algorithm for computing secondary invariants of invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants. The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...
متن کاملCohen-macaulayness of Tangent Cones
We give a criterion for checking the Cohen-Macaulayness of the tangent cone of a monomial curve by using the Gröbner basis. For a family of monomial curves, we give the full description of the defining ideal of the curve and its tangent cone at the origin. By using this family of curves and their extended versions to higher dimensions, we prove that the minimal number of generators of a Cohen-M...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کامل